Distributed Beamline Control System at SSRL

Timothy M. McPhillips
Stanford Synchrotron Radiation Laboratory
Overview

• **Introduction**
 - SSRL Beamline Control Systems
 - Specific Needs of Crystallography Beamlines

• **Distributed Control System**
 - Single Beamline Server Process
 - Multiple Hardware Hosts
 - Simultaneous User Interface Clients

• **General Purpose Control GUI**

• **Future Plans**
Current Control System at SSRL

- **CAMAC Modules**
 - Stepper motor controllers.
 - Real-time clocks, counters, etc.

- **Grand Interconnect (GI)**
 - Hosted by DEC Alpha systems running VMS.
 - Fiber optic connection to CAMAC crate(s).

- **Instrument Control System (ICS)**
 - GI driver calls wrapped in general purpose routines.
 - Asynchronous control using VMS ASTs.

⇒ **VMS Workstation Needed to Control Beamline**
UNIX Workstations Needed to Run User Interfaces

- **Data Collection Software Runs on Digital UNIX**
 - MAR 300, MAR 345 imaging plate systems.
 - ADSC Quantum4 2x2 CCD detector.
 - High capacity RAID storage system for diffraction data.
- **UNIX Workstations Used at Beamlines for Computation**
 - 500 MHz DEC Alphas running Digital Unix
 - SGI Octanes with dual R10000 CPUs running IRIX

→ **UNIX Software Must Communicate with ICS System on VMS Machine**
Additional Needs Of Crystallography Beamlines

- **Huber Kappa Goniometer**
 - Translation stage driven by DC motors.
 - Omega axis may be driven by DC or stepper motors.
 - **ICS/GI/CAMAC does not support DC motors.**

- **Fast Shutters**
 - Short exposure times on BL9-1 and BL9-2 (~1 sec).
 - Need synchronization with data collection motor (<1 msec).
 - **CAMAC timing too slow (latency > 10 ms).**
DMC-1040 Controller from Galil Motion Control

- **4 Axes DC or Stepper**
 - (1) Omega axis
 - (3) Translations

- **Digital I/O**
 - Fast shutter control
 - Additional limit switches

- **Highly Programmable**
 - S-curve profiling for smooth acceleration
 - Synchronization of shutter and omega axis on-board

- **No Device Driver to Write**
 - ISA card for PC
 - Device drivers available for Windows NT
Problem 1: Multiple Hardware Hosts

Need Centralized Control of Beamline Components

- Oversee operation of an arbitrary number of hardware hosts on multiple computing platforms.
- Maintain a single database of component positions.
- Coordinate motions and prevent collisions.
Problem 2: Multiple, Simultaneous User Interfaces

→ Need Centralized Authorization of User Interfaces

- Prevent conflicts between user interfaces.
- Oversee transfer of control between processes.
- Allow interfaces to run anywhere on the network.
- Protect beamline from unauthorized access.
Solution: Distributed Control System (DCS)
DCS Beamline Server Process
Example: General Beamline Control GUI
Status and Future Plans

• **Rollout of Distributed Control System**
 - Initial test on BL7-1 and BL9-1, Fall 1997.
 - Full installation on BL9-1, January 1998.
 - Use in testing BL9-2, Spring 1998.
 - Installation on BL7-1, Summer 1998 shutdown.

• **Further Development**
 - Adaptation of CCD data collection software.
 - Adaptation of MAR imaging plate software.
 - Goniometer control and crash-avoidance routines.
 - Ports of server to OpenVMS and Windows NT.
 - Interface to Sean Brennan’s SUPERvisor.

• **Other Applications of the DCS Paradigm**
 - Multisession data collection software.
 - Multisession data processing software.
Acknowledgments

Paul Phizackerley
Mike Soltis
Henry Bellamy
Peter Kuhn

Martin George
Pierre Capeder
Samuil Belopolskiy